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Abstract

We examine the strategic interaction between an informed expert and an un-
informed decision maker, extending the analysis of Crawford and Sobel (1982).
We modify their model to allow for more extensive communication between the
two parties and show that face-to-face communication between the expert and
the uninformed decision maker followed by a written report from the expert
leads to improved information transmission. In (almost) all cases, there exists
an equilibrium in our modified model that ex ante Pareto dominates all of the
equilibria identified by Crawford and Sobel. This remains true even if the ex-
pert’s bias is so great that in their model no information would be disclosed.
We also show that risk-aversion plays a central role in generating these payoff
gains. Increases in risk-aversion make payoff gains from an additional round of
conversation more likely.
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1 Introduction

In many situations of economic interest, those with the power to make decisions lack
important information about the economic consequences of their choices. As a result,
decision makers often seek advice from better informed parties–experts–prior to
making decisions. Examples of such situations abound. CEOs consult investment
bankers, strategic planners, and marketing specialists before making corporate de-
cisions. Congressional representatives hold hearings and consult lobbyists to learn
more about the impact of proposed legislation. Investors read reports of equity ana-
lysts and call up stock brokers for advice and tips before deciding on an investment
strategy.
A feature common to all of these situations is that the expert being consulted

may well have preferences that do not coincide with those of the decision maker. As
a result, the expert may have the incentive to mislead or to withhold information.
In such situations it is important that the decision maker be able to elicit as much
information as possible from the expert. Indeed, the ability to do this is commonly
thought of as the mark of an effective leader.
The strategic interaction between an uninformed decision-maker and an informed

expert was first studied by Crawford and Sobel (1982) in a now classic paper.1 In
their model the expert, after learning the realization of the payoff relevant state of
nature, sends a costless message to the decision maker, who then takes an action that
has consequences for both parties. Interest in the problem arises, of course, from the
assumption that the preferences of the two parties are not perfectly aligned. Crawford
and Sobel obtain a complete characterization of the set of equilibria in their model
and identify the Pareto dominant equilibrium. They show that preference divergence
between the two parties inevitably leads to withholding of information by the expert;
that is, full revelation is never an equilibrium outcome. Further, as the degree of
preference divergence increases, the amount of information disclosed by the expert
decreases. Once the preference divergence is sufficiently large, the expert can credibly
disclose no information whatsoever.
There are two important features regarding the structure of communication in

their model. First, the role of the decision maker in eliciting information from the
expert is completely passive. Second, there is only a single stage of communication
between the two parties before the decision is made. A number of decision making
situations are like this. For instance, sell-side equity analysts send reports detailing
their recommendations regarding a particular stock to investors who may then use
this information to make an investment decision. Individual investors do not con-
sult analysts during report preparation and decisions are taken after one stage of
communication.
In other situations, however, the structure of communication is more extensive

and may entail active participation by the decision maker and multiple stages of

1The Crawford and Sobel model (hereafter ‘CS model’) is discussed in more detail below.
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communication. For instance, CEOs employing strategy consultants often hold a
series of face-to-face meetings where they offer input leading up to a report or formal
presentation. One explanation immediately suggested for differences between the
structure of communications in this situation as compared to the investor seeking
advice from an analyst is that the CEO himself might possess useful information apart
from that of the expert. In this case, it seems plausible that active dialog between the
decision maker and the expert might be beneficial and that multiple stages might be
needed so that the expert has a chance to incorporate the new information received
from the CEO into his final recommendation.
In the extreme situation considered in the CS model–the decision maker has no

information not already held by the expert–the usefulness of this structure of com-
munication would seem dubious. The main lesson of this paper is that, even when the
decision maker himself possesses no useful information, his active participation com-
bined with multiple stages of communication leads to greater information disclosure
by the expert and this redounds to the benefit of both parties in terms of payoffs.
In particular, we show how a simple and quite natural modification of the mode

of communication in the CS model can result in improvements in information trans-
mission. In the first stage, the informed expert and the uninformed decision maker
engage in one round of “conversation,” which we model simply as a simultaneous
exchange of cheap talk signals. After this, in a second stage, the expert may send
a further message, say a written report. The key aspect of our modified model is
that the communication takes place over multiple stages and that, in the first stage,
it involves two-sided communication–that is, the uninformed decision maker is an
active participant in the process. At first it seems incredible that communication by
a party that has nothing to communicate can have any effect. Indeed, since the deci-
sion maker is completely uninformed his communication can only consist of random
messages. We show, however, that the introduction of random elements can lead to
more information being conveyed and higher payoffs to both parties despite (as we
show later, because of) the fact that both parties are risk-averse.
The main results in our paper establish that in (almost) all circumstances where

the decision maker can extract some information from the expert in the CS model,
there exists an equilibrium in our modified model that ex ante Pareto dominates all
of the equilibria identified by Crawford and Sobel (Theorem 1 below). Further, even
when the expert’s bias is sufficiently great that the decision maker can obtain no
information in the CS model, he might can still obtain information in our modified
model as long as the preference divergence is not too extreme (Theorem 2).
Where do these payoff gains come from? We show that risk-aversion plays a

central role in generating payoff gains to both parties from conversation. In the
situation considered in the CS model, increases in risk-aversion make payoff gains
from an additional round of conversation more likely. Since the purpose of injecting
the active participation of the decision maker into the conversation was purely to
introduce randomness, it is surprising that introducing randomness improves payoffs
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only when the parties are sufficiently risk-averse. Later in the paper, we offer a partial
explanation for this seeming paradox.

Relation to the Literature It is known that adding rounds of communication
can expand the sat of equilibrium outcomes even in games with complete information.
In two player games, however, these effects are rather limited. In such games, the
set of equilibrium payoffs with preplay communication is just the convex hull of
equilibrium payoffs of the original game (see, for instance, Barany, 1992 and Forges,
1990b).
In a double auction with incomplete information, Farrell and Gibbons (1989b)

and Matthews and Postlewaite (1989) show that additional equilibria arise when that
game is modified by adding a single round of simultaneous cheap talk between a buyer
and a seller. Also along these lines is the paper by Forges (1990a). She constructs
an extended example concerning an uninformed employer and a job applicant with
private information about his type. With only a single round of communication, in
her example, there is a separating and a pooling equilibrium. She shows how adding
multiple rounds of costless signaling affects the set of equilibrium payoffs. While
multiple rounds permit payoffs that are better for the applicant this is not so for the
employer since the employer can do no better than in the fully separating equilibrium
of the game with one stage of communication.
Aumann and Hart (2002) provide a complete characterization of the set of Bayes-

Nash equilibria in two-person bimatrix games where one of the players is better
informed than the other and where conversation consists of up to an infinite number of
stages of communication. Their equilibrium characterization is geometric in nature,
using the newly introduced concepts of diconvexity and dimartingale. It is quite
general in scope–it applies to all bimatrix games, not just “cheap talk” games.2 The
cost of this generality, however, is that the characterization is quite abstract. As a
consequence, even in special classes of games, it is not understood when additional
communication leads to Pareto improvements nor why.
Our contribution relative to this literature is to show that in the CS model the

introduction of an additional round of communication does not simply expand the
set of equilibria, but expands it in such a way that the equilibrium payoffs of both
the decision maker and the expert can (almost) always be improved–to the mutual
benefit of both the decision maker and the expert. We show that in the CS model,
the key to this result is that the informed party be sufficiently risk-averse. To our
knowledge, we are the first to demonstrate the possibility of Pareto gains from adding
rounds of signaling beyond the first and that risk-aversion is responsible for these
payoff improvements.
These results are not simply of theoretical interest. The CS model constitutes

2Since the Aumann and Hart characterization concerns games with finite states and actions, it
is not possible to apply their results to a setting–like the CS model–with a continuum of states
and actions.
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a foundation for work on costless communication. It has been studied extensively
and applied to problems in political science (see the recent book by Grossman and
Helpman, 2001 for an account of this work), public finance (Bernheim and Severinov,
2001), finance (Morgan and Stocken, 2000), and other fields. The CS model is the
benchmark used to compare the benefits of introducing multiple experts (Krishna
and Morgan, 2001a; Battaglini, 2002), delegation (Dessein, 2001), screening (Baron,
2000), and restrictive legislative rules (Gilligan and Krehbiel, 1987, 1989 and Krishna
and Morgan, 2001b). The pessimistic estimates of information loss contained in
Crawford and Sobel may thus affect policy conclusions based on these comparisons.
Finally, a separate strand of the literature deals with the case where an exter-

nal mediator may be used to convey information between the parties (see Myerson,
1986 and Forges 1986, 1990b). In contrast, we are interested in the effects of plain
conversation, where no mediation is possible. In Section 6 we demonstrate that this
distinction matters. In an example we construct an equilibrium when the expert is
free to use a mediator that is not attainable with plain conversation.
The remainder of the paper proceeds as follows: In Section 2, we review the

CS model and highlight the central properties of their equilibrium characterization.
Section 3 presents two examples which illustrate our main result–the introduction
of an additional round of communication between the expert and the decision maker
leads to improved information transmission. In Section 4, we prove this result and
characterize a class of monotonic equilibria for the case where the expert’s bias is not
too large. Section 5 deals with the extreme bias case and shows that nonmonotonic
equilibria are required to improve information transmission in these circumstances.
Section 6 examines some extensions, especially the effect of mediated talk. Section 7
discusses the results.

2 The Crawford-Sobel Model

We consider the uniform-quadratic model introduced by Crawford and Sobel.3 A
decision maker must choose some decision y. His payoff from this decision depends
on the action and an unknown the state of the world, θ, assumed to be distributed
uniformly on the unit interval.
The decision maker can base his decision on the message, m, sent at no cost by

an expert who knows the precise value of θ. The decision maker’s payoff function is

U (y, θ) = − (y − θ)2 (1)

3While the equilibrium characterization obtained by Crawford and Sobel applies to a more general
specification of preferences and state distributions, to make welfare comparisons among the equilibria
requires much more structure (their Assumption M). In practice, the uniform-quadratic model is
the only specification that is used in applications of their model. In Section 4.3 we consider a more
general family of preferences.
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and the expert’s payoff function is

V (y, θ, b) = − (y − (θ + b))2 (2)

where b > 0 is a parameter that measures how closely the preferences of the expert
are aligned with those of the decision maker. In other words, b is a measure of the
bias of the expert relative to that of the decision maker.
Note that if the preferences of the two parties are identical–that is, if b = 0, then

it is in the interests of the expert to reveal the state precisely.
Crawford and Sobel postulate the following sequence of play:

` −− −−−−−− −−−−+−−−− −−−−−− −− a
Expert
learns θ

Expert sends
written message m

DM chooses
action y

The communication is one-sided–from the informed expert to the uninformed decision-
maker–and comes in a single stage. In what follows, we refer to such one-sided
communication as being in written form. This serves to contrast this form of com-
munication with the form studied in later sections.
Crawford and Sobel have shown that all equilibria in their game are equivalent to

partition equilibria, that is, equilibria in which there is only a finite number of actions
chosen in equilibrium and each action is associated with an interval of states. This
also implies that the equilibria are monotonic–that is, the equilibrium action is a
nondecreasing function of the state.
Crawford and Sobel also show that for any value of b there are a finite number of

equilibrium outcomes.
Let

N (b) =

&
−1
2
+
1

2

r
1 +

2

b

'
(3)

where dxe denotes the smallest integer greater than or equal to x. Crawford and Sobel
show that the number of distinct equilibrium outcomes is finite–it is exactly N (b).
There is exactly one equilibrium with a one-element partition, one equilibrium with a
two-element partition, . . . , one equilibrium with N (b)-element partition. There is no
equilibrium in which the number of elements of the partition exceedsN (b). Moreover,
the N (b) equilibria can be Pareto ranked and both parties prefer equilibria with a
greater number of partition elements. that for any b > 0, the number of elements of
the partition associated with the Pareto dominant equilibrium, which we will term
the best equilibrium, is N(b).
Define

β (N) =
1

2N (N + 1)
(4)
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It is routine to verify that for all b such that β (N) ≤ b < β (N − 1) , N (b) = N.
Crawford and Sobel show that, for all b such that β (N) ≤ b < β (N − 1), the best
equilibrium is one in which the state space is partitioned into N intervals [ai−1, ai],
i = 1, 2, ...N, where

aj =
j

N
+ 2bj (j −N) (5)

In such an equilibrium, the expert sends the same message, mi, if the state θ ∈
[ai−1, ai] and, given this message, the decision maker takes the optimal action

y∗i =
ai−1 + ai

2

The expected payoff of the decision maker in the best equilibrium–that is, one with
an N (b) element partition–is

U (b) = − 1

12N (b)2
− b2

¡
N (b)2 − 1¢
3

(6)

Finally, note that if the bias of the expert is large enough, then the expert will
convey no information to the decision maker. Specifically, if b ≥ 1

4
= β (1), then

N (b) = 1 and so the expert sends the same message for all θ ∈ [0, 1].

3 Face-to-Face Communication

Our goal is to explore how amendments to the original model of Crawford and Sobel
that allow for more extensive communication, possibly involving both the parties,
affect information transmission. Our main results show that active participation by
the decision maker along with multiple stages of communication lead to more infor-
mation disclosure by the expert. Before proceeding with the analysis of this model,
it is useful to show that either feature on its own does not lead to an improvement.
As a first step, consider a variation of the CS model in which there are multiple

stages but where the decision maker is passive. That is, the expert sends multiple
messages, say l and m, to the decision maker as depicted below.

` −− −−−+−−− −−−+−−− −−− −− a
Expert
learns θ

Expert sends
message l

Expert sends
message m

DM chooses
action y

This, however, does not affect the set of equilibria identified by Crawford and Sobel.
This is because the expert can anticipate the actions y (l,m) that the decision maker
will choose following any pair of messages l and m, and so the expert will choose a
pair of messages that maximizes his expected utility in state θ. But these outcomes
are the same as CS equilibria. More generally, if there is a deterministic rule that
determines the decision maker’s choices as a function of the messages sent by the
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expert, the set of equilibria are the same as in the CS model. Thus, multiple stages
per se are not beneficial.
Next consider a variation of the CS model where the decision maker is an active

participant but there is a single stage. That is, consider the sequence of play where:

` −− −−−− −−−−−+−−−−− −−−− −− a
Expert
learns θ

Expert and DM each
send a message

DM chooses
action y

In this case also, regardless of whether the messages are exchanged sequentially or
simultaneously, the set of equilibria is identical to the set of CS equilibria. This
is obvious when messages are exchanged simultaneously or when the decision maker
sends his message after the expert’s since the decision maker has no useful information
of his own. When the decision maker sends his message first, this message could, in
principle, be used as a randomizing device to coordinate among the set of possible
equilibria in the CS model. The decision maker, however, is not indifferent among
any of the equilibria and so would not want to randomize among these. Thus active
participation by the decision maker per se is not beneficial either.
We study the simplest possible model which combines both features–active par-

ticipation by the decision maker and multiple stages of communication–and show
that together they lead to benefits. Specifically, we amend the original model of
Crawford and Sobel to allow the expert and the decision maker to meet face-to-face
in the first stage and engage in (simultaneous) communication. In the second stage,
the expert is allowed to send a further message, possibly conditioning this on the
outcome of the face-to-face meeting. In the amended model the sequence of play is:

` −− −−−−+−−−− −−−−+−−−− −−− −− a
Expert
learns θ

Expert and DM
meet face-to-face

Expert sends
written message m

DM chooses
action y

A word on terminology is in order here. We use the term “face-to-face" meeting
as short-hand to define a situation in which the two parties send messages l1 and l2
simultaneously. (This should be contrasted with sequential communication in which
the parties speak sequentially, that is, first player 1 sends the message l1 and then
2, having heard l1 sends the message l2.) It is useful to think of this situation as a
meeting between the expert and the decision maker prior to the issuance of a written
report by the expert. In what follows, we will refer to the two-stage communication
structure outlined above as the model with face-to-face communication.
We begin by demonstrating the benefits of this mode of communication in the con-

text of two specific examples. Example 1, illustrating the workings of one of our main
results, Theorem 1, shows how face-to-face communication can improve information
when the expert is “moderately” biased. In Example 2, illustrating Theorem 2, the
expert’s bias is extreme–that is, with only written communication, the only equi-
librium involves babbling and so no information is revealed. The example illustrates
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that even in this case, face-to-face communication can lead to useful information
transmission.

Example 1 Suppose that the expert’s bias b = 1
10
. Then there are exactly two

equilibria in the CS model.4 One is the completely non-informative (or “babbling”)
equilibrium in which the expert sends the same message regardless of the state, and
the decision maker disregards all messages from the expert. The other equilibrium
is partially informative, and leads to a partition in which the expert breaks [0, 1] at
a1 =

3
10
; that is, the only information that the expert reveals is whether the state θ

lies in the interval [0, 3
10
] or in the interval [ 3

10
, 1]. If θ ∈ [0, 3

10
], the decision maker

takes the appropriate optimal action y = 3
20
and if θ ∈ [ 3

10
, 1], the decision maker

takes the optimal action y = 13
20
. The ex ante expected payoff of the decision maker in

this equilibrium is − 37
1200

whereas the ex ante expected payoff of the expert is − 49
1200

.
Let us now amend the model to allow for face-to-face communication between

the informed expert and the uninformed decision maker. The following strategies
constitute an equilibrium of the extended game.
The face-to-face meeting consists of a simultaneous exchange of messages between

the expert and the decision maker. The expert reveals some information at the
meeting but there is also some randomness in what transpires. Depending on how
the conversation goes, the meeting is deemed by both parties to be a “success” or it
is deemed to be a “failure.” How this is done is explained in more detail below.
During the meeting, the expert reveals whether the state, θ, is above or below

x = 2
10
; he also sends some additional messages that affect the success or failure of

the meeting.
If he reveals during the meeting that θ ≤ 2

10
, then any other messages exchanged

in the meeting, and in the subsequent written report, are uninformative. The decision
maker then plays a low action yL =

1
10
that is optimal given the information that

θ ≤ 2
10
.

But if the expert reveals during the meeting θ > 2
10
, then the informativeness

of the written report depends on whether the meeting was deemed to be a success
or a failure. In the event of a failure, there is no further information contained in
the subsequent written report. The decision maker then plays the “pooling” action
yP =

6
10
that is optimal given the information that θ > 2

10
. In the event the meeting

is a success, however, information in the written report results in a further division of
the interval [ 2

10
, 1] into [ 2

10
, 4
10
] and [ 4

10
, 1]. In the first subinterval, the medium action

yM = 3
10
is taken and in the second subinterval the high action yH = 7

10
is taken. The

actions taken in different states are depicted in Figure 1. The dotted line depicts the
action, θ + 1

10
, that is “ideal” for the expert in each state.

Notice that in state 2
10
, the expert prefers yL to yP (in the figure, yL is closer to the

expert’s ideal point than is yP ) and prefers yM to yL (indeed yM is the expert’s ideal

4Technically, there are a continuum of equilibria all of which are outcome equivalent to one of
the two described in the text.
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Figure 1: Equilibrium with Face-to-Face Meeting

action).5 Thus, if there were no uncertainty about the outcome of the meeting–for
instance, if all meetings were “successes,” then the expert would not be willing to
reveal whether the state is above or below 2

10
. In particular, for states θ = 2

10
− ε, it

would be in the interests of the expert to say that θ > 2
10
thereby inducing yM instead

of yL. Similarly, if all meetings were failures, then for states θ = 2
10
+ ε, it would be

in the interests of the expert to say θ < 2
10
, thereby inducing yL instead of yP .

Clearly, there exists a probability p such that in state 2
10
the expert is indifferent

between yL and a p : 1− p lottery between yM and yP (whose certainty equivalent is
the action labelled yC in the figure). It is also the case that for all θ < 2

10
, the expert

prefers yL to a p : 1− p lottery between yM and yP ; for all θ > 2
10
, the expert prefers

a p : 1− p lottery between yM and yP to yL. It may be verified that in this example,
p = 5

9
.

5The fact that yM is the ideal point for the expert in state x is a artifact of the example and
unimportant for this construction. The general principle is that the expert prefer yM to yL.
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A1 A2 A3 A4 A5 A6 A7 A8 A9
A1 1 0 0 0 0 1 1 1 1

A2 1 1 0 0 0 0 1 1 1

A3 1 1 1 0 0 0 0 1 1

A4 1 1 1 1 0 0 0 0 1

A5 1 1 1 1 1 0 0 0 0

A6 0 1 1 1 1 1 0 0 0

A7 0 0 1 1 1 1 1 0 0

A8 0 0 0 1 1 1 1 1 0

A9 0 0 0 0 1 1 1 1 1

Table 1: A Jointly Controlled Lottery

It remains to specify a conversation in the meeting such that it is deemed to be
a success with probability p = 5

9
. To do this we employ the device of constructing

a jointly controlled lottery (see Aumann and Maschler, 1995). Let the expert send
a message of the form (Low,Ai) or (High,Ai) and let the decision maker send a
message of the form Aj, where i, j ∈ {1, 2, ..., 9} . These messages are interpreted in
the following manner. Low signals that θ ≤ 2

10
and High signals that θ > 2

10
. Thus

the first component of the expert’s message conveys some (coarse) information. The
Ai and Aj messages play the role of a coordinating device and determine whether
the meeting is deemed to be a success or not. The expert chooses Ai at random, and
each Ai is equally likely. Similarly, the decision maker chooses Aj at random. Given
these choices, the meeting is deemed to be a success if 0 ≤ i− j < 5 or if j − i > 4.
Otherwise, it is a failure. (The possible outcomes are provided in Table 1 in which a
1 denotes a success and a 0 denotes a failure.). For example, if the messages of the
expert and the decision maker are (High,A2) and A8, respectively, then it is inferred
that θ > 2

10
and since j− i = 6 > 4, the meeting is declared to be a success. Observe

that with these strategies, given any Ai, the probability that the meeting is a success
is exactly 5

9
. Similarly, given any Aj, the probability of success is 59 also.

It may be verified that this indeed constitutes an equilibrium. In particular, given
the proposed play in the subgames, in every state θ < 2

10
the expert prefers to send the

message Low, and in every state θ > 2
10
the expert prefers to send the message High.

Moreover, given the strategies neither the expert nor the decision maker can affect
the play in the subgame by strategically sending the various coordinating messages
Ai or Aj.
The equilibrium of the extended game constructed above conveys more informa-

tion to the decision maker than any of the equilibria of the CS model. In face, it
is ex ante Pareto superior. The ex ante expected payoff of the decision maker is
now 36

37
× (− 37

1200
) whereas that of the expert is 48

49
× (− 49

1200
). The remarkable fact

about the example is that this improvement in information transmission is achieved
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by adding a stage in which the uninformed decision maker also participates by in-
jecting uncertainty into the resulting actions despite the fact that both parties are
risk-averse.
Both parties coordinate their play in the subsequent game on the outcome of the

meeting. Since the outcome of the meeting is uncertain–whether it is a success or
failure is not known beforehand–this creates uncertainty over how the information
conveyed by the expert will ultimately translate into decisions. This in turn, alters
the incentives for the expert to reveal divisions of the state space (in the original
CS model, having the expert report that θ is above or below 2

10
cannot be part of

any equilibrium). The informational gains result from the fact that, having already
revealed a division of the state space in the meeting preceding the written report,
it is now credible for the expert to convey more precise information in his report.
Although this happens only probabilistically, it is beneficial ex ante.

Example 2 We now turn to situations where the bias of the expert is extreme.
In particular, suppose that the expert is so biased (b ≥ 1

4
) that no information

transmission takes place in the CS model–that is, the only equilibrium involves
babbling. Can a quiescent expert be induced to reveal some information as a result
of a face-to-face meeting? Surprisingly, the answer turns out to be yes.
Specifically, suppose b = 7

24
. Let x = 0.048 and z = 0. 968 (the reasons for

particular choices of these points will become apparent later). Suppose that during
the face-to-face meeting the expert reveals whether the state θ is in the set [x, z]
or not. If he reveals that θ ∈ [x, z] , then the meeting ends and there is no further
information contained in the written report. The decision maker then plays a medium
action yM = 1

2
(x+ z) that is optimal given the information that θ ∈ [x, z] .

If the expert says θ ∈ [0, x] ∪ [z, 1] , then, as in Example 1, the informativeness
of the written report depends on whether the meeting was deemed to be success or
a failure. In the event of a failure, once again the written report contains no further
information, and the decision maker plays the pooling action, yP = . 407, that is
optimal given the information that θ ∈ [0, x] ∪ [z, 1] . In the event the meeting was
a success, information contained in the written report results in a further division of
the set [0, x]∪ [z, 1] into [0, x] and [z, 1] . In the first subinterval, the low action yL = x

2

is taken and in the second subinterval the high action yH =
1+z
2
is taken. See Figure

2.
In state x, the expert prefers yM to yL but prefers yP to yM . In state z, however,

the expert prefers yH to yM but prefers yM to yP . It can be shown that there exists
a probability p such that the expert is indifferent between yM and a p : 1− p lottery
between yL and yP when the state is x. At the same time, the expert is indifferent
between yM and a p : 1 − p lottery between yH and yP when the state is z. In this
example, this is true for p = 1

4
.

A conversation such that the meeting is deemed to be a success with probability
p = 1

4
is easily specified as before. Let the expert send a message of the form
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Figure 2: A Nonmonotonic Equilibrium

(In,Ai) or (Out,Ai) and let the decision maker send a message of the form Aj, where
i, j ∈ {1, 2, 3, 4} . These messages are interpreted in the following manner. The signal
In means that θ ∈ [x, z] and Out means that θ ∈ [0, x]∪ [z, 1] . The messages Ai and
Aj are chosen randomly with equal probability and the meeting is deemed a success
if and only if i = j.
Since there is some information being transmitted in this equilibrium, the outcome

is Pareto superior to the unique (babbling) equilibrium of the CS model. Thus a face-
to-face meeting preceding a written report can result in information transmission in
circumstances where a written report by itself would be completely uninformative.
As in the previous example, the introduction of uncertainty in final decisions

relaxes the incentives of the expert to reveal truthfully. While that remains important,
the key to this construction is that the initial information conveyed by the expert is
“non-convex”: in some cases he reveals only that θ ∈ [0, x] ∪ [z, 1] . Then, if the
meeting is a success, the expert is willing to further reveal whether θ ∈ [0, x] or
θ ∈ [z, 1] . If the initial information were an interval, as in Example 1, the extreme
bias of the expert would preclude any further information disclosure. (In fact, we
show in Proposition 3 that once the bias is sufficiently high (b ≥ 1

8
), there is no

monotonic equilibrium of the game with a face-to-face meeting that is superior to all
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equilibria of the CS model.)
The key to both examples is that at after the expert reveals some information

in the face-to-face meeting, there are multiple equilibria in the remaining game. In
Example 1, once the expert reveals that the state is in [x, 1], there are two equilibria–
the babbling equilibrium and a partition equilibrium of size 2. In Example 2, the
expert’s bias is so high that there are no nontrivial partition equilibria and so this
trick does not work. But if the expert instead reveals that the state is in a set
of the form [0, x] ∪ [z, 1], then in the remaining game there are two equilibria–the
babbling equilibrium and on in which this set is further subdivided into [0, x] and
[z, 1]. The role of the decision maker is to ensure that which of the two equilibria is
played depends on the outcome of a random event–whether or not the conversation
is successful–and the probability of this is chosen so that the expert is willing to
reveal the relevant information during the face-to-face meeting.

4 Moderate Bias (b < 1
8)

In this section we generalize the construction in Example 1 to show that, when an
expert’s bias is moderate

¡
b < 1

8

¢
, there exist equilibria with conversations that are

Pareto superior to all equilibria in the CS model. The main result in this section is:

Theorem 1 For almost all b < 1
8
, there exists a perfect Bayesian equilibrium in the

model with face-to-face communication which is Pareto superior to all equilibria in
the CS model.

To prove the result, we first characterize a class of equilibria arising with face-
to-face conversations (Section 4.1) and then show that for almost all values of b,
the payoff maximizing equilibrium in this class is an improvement over all equilibria
in the CS model (Section 4.2). In Section 4.3, we consider a more general class of
preferences and offer some intuition for the welfare results highlighting the role played
by the expert’s risk aversion.
For future reference, it is useful to note that, like all partition equilibria, the equi-

libria constructed in this section are all monotonic–that is, they have the property
that higher states are always associated with (weakly) higher actions. The main
result of this section pertains to situations in which the bias b < 1

8
.

4.1 Construction of Equilibria

The nature of the equilibrium, whose detailed construction is provided below, is as
follows.

• In the face-to-face meeting, the expert’s message reveals whether the state θ
is less than a given quantity x or not and a second message A1 chosen from

14



some suitable finite set of messages A. Formally, the expert’s message is either
of the form (Low,A1) or of the form (High,A1) . The first component, Low or
High, conveys whether θ < x or not. The decision maker also sends a message
A2 ∈ A.

• Subsequent play depends on the messages that were exchanged in the face-to-
face meeting.

— If the expert says Low, this is interpreted to mean that θ < x. In the
remaining game, a partition equilibrium in the interval [0, x] is played
regardless of what other messages are exchanged.

— If the expert says High, this is interpreted to mean that θ ≥ x. The
subsequent play then depends on whether the meeting is deemed to be a
success. The success or failure of the meeting is determined by a “success
function” S : A × A → {0, 1} . A meeting is a success if and only if
S (A1, A2) = 1. The message sets A and the success function S are chosen
so that a particular jointly controlled lottery to be chosen below can be
played.

∗ If the meeting is deemed to be a success, then in the subsequent play
the expert further reveals whether θ ∈ [x, z] or θ ∈ [z, 1] for some
suitably chosen z satisfying x < z < 1–that is, the interval [x, 1] is
further separated into [x, z] and [z, 1] .
∗ If the meeting is deemed to be a failure, then there is no further
information conveyed–that is, a babbling equilibrium in the interval
[x, 1] is played.

Define
γ (N) =

1

2 (N + 1)2
(7)

Observe that γ (1) = 1
8
, γ (N) is monotonically decreasing and limN→∞ γ (N) = 0.

Using (4) and (7) it is easy to verify that for all N ≥ 2

γ (N) < β (N) < γ (N − 1) < β (N − 1)

In fact, for all N
1

γ (N)
=
1

2

µ
1

β (N)
+

1

β (N + 1)

¶
so that γ (N) is the harmonic mean of β (N) and β (N + 1).
Let b < 1

8
= γ (1) . Then there exists a unique N such that

γ (N) ≤ b < γ (N − 1)
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Fix such an N. Notice that if β (N) ≤ b < γ (N − 1), then N (b) = N ; whereas if
γ (N) ≤ b < β (N), then N (b) = N + 1.
Choose any x > 0 satisfying

N − 1
N + 1

− 4b (N − 1) < x < aN−1 (8)

We will show that for any such x, the strategies outlined above constitute an equi-
librium.
The equilibrium strategies will call on the expert to distinguish states θ < x from

states θ ≥ x in the face-to-face meeting.

Play in the interval [0, x) In the course of the face-to-face meeting, if the
expert reveals that θ ∈ [0, x), then a partition equilibrium of size N − 1 is played in
the subgame that follows.
Specifically, let z0, z1, z2, ..., zN−2, zN−1 be a partition of [0, x) of size N − 1 such

that z0 = 0, zN−1 = x, and for j = 1, 2, ..., N − 2

(zj + b)− zj−1 + zj
2

=
zj + zj+1

2
− (zj + b)

zj+1 = 2zj − zj−1 + 4b

As in Crawford and Sobel, this second-order difference equation has a solution
parametrized by z1 (given that z0 = 0):

zj = z1j + 2j (j − 1) b
Then setting zN−1 = x we obtain

x = z1 (N − 1) + 2 (N − 1) (N − 2) b
and by solving for z1 and substituting into the difference equation above, we obtain

zj =
j

N − 1x+ 2bj (j − (N − 1)) (9)

Play in the interval [x, 1] On the other hand, if in the course of the face-to-
face meeting, the expert reveals that θ ∈ [x, 1], then the subsequent play depends
on the second component of the conversation in the meeting, that is, on A1 and A2.
If S (A1, A2) = 1, then in the written report the expert will further reveal whether
θ ∈ [x, z] or θ ∈ [z, 1]. On the other hand, if S (A1, A2) = 0, then the written report
will contain no additional information, that is, it will only repeat that θ ∈ [x, 1].
Let z be defined by

(z + b)− z + x

2
=

z + 1

2
− (z + b)
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This means that at θ = z, the expert is indifferent between revealing that θ ∈ [x, z]
and revealing that θ ∈ [z, 1]. Then

z = −2b+ 1
2
x+

1

2

Thus, we have shown that conditional on having initially reported honestly that
the state is above or below x, the expert’s incentive compatibility conditions in the
continuation game hold. It remains to show that there exists a p : 1 − p lottery
between actions x+z

2
and x

2
that leaves the expert indifferent to action x+zN−2

2
in state

x. The existence of such a lottery follows as a consequence of the next two lemmas.

Lemma 1 At x the expert strictly prefers the action x+z
2
to x+zN−2

2
.

Proof. This is the same as requiring that

(x+ b)− x+ zN−2
2

>
x+ z

2
− (x+ b)

which is equivalent to

x >
N − 1
N + 1

− 4b (N − 1)
and this holds by our choice of x.

Lemma 2 At x the action x+zN−2
2

induced in the interval [zN−2, x] is strictly preferred
to the “babbling” action x+1

2
induced in the interval [x, 1] .

Proof. It is sufficient to verify that

x+ b− x+ zN−2
2

<
1 + x

2
− (x+ b)

and this is equivalent to
x < aN−1

which holds by our choice of x.

We have thus shown,

Proposition 1 (Existence of Monotonic Equilibria) For all b < 1
4
, there is a

continuum of perfect Bayesian equilibria of the game with face-to-face communication.
The equilibrium outcomes are distinct from those of the equilibria of the CS model.
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Renegotiation A concern one might have about the equilibrium construction in
Proposition 1 is that, since the equilibria arising in the interval [x, 1] are ex ante
Pareto ranked, there might be incentives for both the expert and the decision maker
to renegotiate in the event of an unsuccessful conversation. While it is true that the
equilibria following success and failure are rankable ex ante, they are not rankable
once the expert knows θ, as is the case when the conversation is resolved. To see this,
notice that for states close to θ = 1+x

2
− b, the expert prefers a failed conversation to

a successful one; whereas for states close to θ = 1+z
2
− b, successful conversations are

preferred to failures. In contrast, the decision maker, ignorant of the state, always
prefers a successful conversation. Thus, it is not the case that the expert and the
decision maker unanimously prefer the equilibrium following a successful conversation
in every state. Indeed, given the differences in the expert’s preferences for the two
equilibria, his willingness to renegotiate would itself reveal to the decision maker more
information than the expert would care to disclose in equilibrium.

4.2 Pareto Superior Equilibria

We now argue that for all b < 1
8
, there are equilibria of the type constructed in the

previous subsection that are Pareto superior to all equilibria of the CS model. We
do this by choosing a specific value of x, satisfying (8), that maximizes the decision
maker’s payoff among all equilibria from this class.
For any x that satisfies (8), the contribution to the decision maker’s equilibrium

payoff from the interval [0, x] is:

W0 = −
N−1X
j=1

Z zj

zj−1

µ
zj−1 + zj

2
− θ

¶2
dθ

= − 1
12

x3 + 4N (N − 1)2 (N − 2)xb2
(N − 1)2

where zj are defined in (9).
The contribution to the decision maker’s expected payoff from the interval [x, 1]

is the weighted average of two events. With probability p, the expert’s written report
distinguishes states θ ∈ [x, z] from states θ ∈ [z, 1] where z = −2b + 1

2
x + 1

2
. With

probability 1− p, no additional information is offered. The value of p that keeps the
expert indifferent is

p =
4

3

(N − 1)2 ¡4N (N − 2) b2 + 4b− (1− x)2
¢
+ x2

(N − 1)2 ¡16b2 − (1− x)2
¢ (10)

18



The expected payoff in the interval [x, 1] is

W1 = −p
ÃZ z

x

µ
x+ z

2
− θ

¶2
dθ +

Z 1

z

µ
1 + z

2
− θ

¶2
dθ

!

− (1− p)

Z 1

x

µ
1 + x

2
− θ

¶2
dθ

= − 1
12

4N (N − 2) (N − 1)2 (1− x) b2 + 4 (N − 1)2 (1− x) b+ x2 (1− x)

(N − 1)2

where p is defined in (10).
The overall expected payoff is

W (b, x) = W0 +W1

= − 1
12

4N (N − 1)2 (N − 2) b2 + 4 (N − 1)2 (1− x) b+ x2

(N − 1)2

which is maximized by choosing x∗ = 2b (N − 1)2 and this satisfies (8). The maxi-
mized value of the decision maker’s equilibrium payoff for this value of x is

W (b) = −1
3
b (1− b) (11)

Now recall that there exists a unique N such that γ (N) ≤ b < γ (N − 1). If
β (N) ≤ b < γ (N − 1), then N (b) = N and using (6), we have

W (b)− U (b) =
1

12

(2bN2 − 1)2
N2

> 0

since b < γ (N − 1) = 1
2N2 . On the other hand, if γ (N) ≤ b < β (N), then N (b) =

N + 1 and

W (b)− U (b) =
1

12

¡
2b (N + 1)2 − 1¢2

(N + 1)2
≥ 0

and the inequality is strict as long as γ (N) = 1
2(N+1)2

< b.
We have thus demonstrated that there is a payoff improvement except at points

b == 1
2(N+1)2

. This completes the proof of Theorem 1.
Figure 3 displays the decision maker’s expected payoff under the payoff maximiz-

ing equilibrium in the class identified in Proposition 1, denoted by W (b), compared
to the payoff from the best equilibrium in the CS model, denoted by U (b). Notice
that for almost all values of b, W (b) > U (b). As noted above, the exceptions occur
at points where b = γ (N). Notice that γ (1) = 1

8
.
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Figure 3: Comparison of Payoffs in the Two Models

4.3 The Role of Risk Aversion

The results of the previous sections point to the benefits of face-to-face communica-
tion, benefits that accrue even if one of the parties is uninformed. The purpose of
the face-to-face communication is only to introduce some randomness in way sub-
sequent play will unfold–with some probability the subsequent play will be quite
informative and with the remaining probability it will be uninformative. We have
argued that on average this randomness leads to a payoff improvement for both the
parties. Since both parties are risk-averse, however, at first glance this seems some-
what paradoxical–how can the introduction of additional uncertainty help risk-averse
agents? But as we argue now, it is precisely the risk aversion of both parties that
leads to a payoff improvement.6

To isolate the effects of risk aversion consider the following class of preferences
that generalize the quadratic payoff functions considered in earlier sections. Suppose
that the decision maker’s utility function is of the form

U (y, θ) = − |y − θ|γ
6We were led to investigate the effects of risk-aversion as a result of a question posed by Wouter

Dessein.
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whereas that of the expert is of the form

V (y, θ, b) = − |y − (θ + b)|γ

where γ ≥ 1 is a parameter and, as usual, b is a measure of the bias. When γ = 2,
this is equivalent to supposing that utility functions are quadratic.
Given a particular θ, − |y − θ|γ is a concave function of y, and it is useful to think

of γ as a measure of risk aversion, even though the utility function is not increasing
in y. In particular,

γ − 1 =
¯̄̄̄
(y − θ)Uyy

Uy

¯̄̄̄
measures the degree of concavity of U (·, θ) in a manner analogous to the Arrow-Pratt
measure of relative risk aversion.
This class of preferences has the following useful features. First, notice that equi-

libria in the CS model are invariant to the parameter γ–any partition equilibrium
obtained for the case γ = 2 remains a partition equilibrium for all γ ≥ 1 and vice-
versa.
What about equilibria with face-to-face communication? Because of the random-

ness inherent in such equilibria, these are not invariant to the degree of risk aversion.
Suppose 1

12
≤ b < 1

8
. This implies that the most informative CS equilibrium involves

a partition of size 2 in which the expert communicates whether the state θ ∈ [0, a1] or
whether θ ∈ [a1, 1] where a1 = 1

2
−2b. Equilibria with face-to-face communication are

constructed by first choosing an x < a1 and defining z = 1
2
+ 1

2
x− 2b so that, if it is

common knowledge that θ ∈ [x, 1], then there is an informative partition equilibrium
in which, having revealed that θ ∈ [x, 1] , the expert further reveals that θ ∈ [x, z] or
x ∈ [z, 1]. There is, of course, also a babbling equilibrium in which, having revealed
that θ ∈ [x, 1] , no further information is revealed. Neither of these is, of course,
affected by the parameter γ. The construction is completed by noting that in state
x, the expert prefers the action yL = x

2
, optimal for the decision maker in the interval

[0, x], to the “pooling” action yP = 1+x
2
, optimal in [x, 1] , but prefers the action

yM = x+z
2
, optimal in [x, z], to yL =

x
2
(for an example, see Figure 1). Thus, there

exists a probability p such that in state x, the expert is indifferent between revealing
that θ ∈ [0, x] and θ ∈ [x, 1]; that is

V (yL, x, b) = pV (yM , x, b) + (1− p)V (yP , x, b)

While the actions yL, yM and yP are unaffected by changes in γ the probability p is
affected. In particular, as γ increases p increases. This is because, in order to keep
a more risk-averse expert indifferent between yL and a p : 1− p lottery between the
better action yM and the worse action yP , it is necessary to put more weight on the
better action yM .
We now examine how changes in γ affect the equilibrium payoffs in our con-

struction. The ex ante expected payoff of the decision maker in the constructed
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equilibrium, parameterized by x, is

W (x) =

Z x

0

U (yL, θ) dθ + p

µZ z

x

U (yM , θ) dθ +

Z 1

z

U (yH , θ) dθ

¶
+(1− p)

Z 1

x

U (yP , θ) dθ

With quadratic preferences–that is, when γ = 2,

W (x) =
1

3
xb− 1

3
b− 1

12
x2

When x = a1, then p = 0, and the equilibrium is equivalent to the most informative
CS equilibrium. But

W 0 (a1) =
2

3

µ
b− 1

8

¶
< 0

since b < 1
8
. This means that there exists an open set of x’s satisfying x < a1 such that

the corresponding equilibria with face-to-face communication are all Pareto superior
to the most informative partition equilibrium. (In fact, W is a concave function of x
and the optimal x = 2b < a1.)
With “absolute value” preferences–that is, when γ = 1, however,

W (x) = −4
3
b2 − 1

3
bx− 1

3
x2 +

1

4
x− 1

6

and now
W 0 (a1) = b− 1

12
> 0

since b > 1
12
. Since W is concave, this means that for all x < a1, there do not exist

equilibria with face-to-face communication, of the kind constructed in Proposition
1, that are Pareto superior to all equilibria in the CS model. In general, for any b,
there is a γ∗ ∈ (1, 2) such that if the risk aversion exceeds γ∗, then there are Pareto
superior equilibria.
Intuitively, the role that risk aversion plays in improving welfare may be thought

of as follows: By slightly shifting x to the left of the cutpoint in the CS model, a1,
a conversation that proves unsuccessful actually leads to a slightly less informative
equilibrium.7 At the same time, this leftward shift creates the possibility of a suc-
cessful conversation. In the event the conversation is successful, the equilibrium is
Pareto superior to any equilibrium of the CS model.8 The more risk-averse is the
expert, the greater the gain in the probability that a conversation will be successful
from a small shift leftward in x.

7The partition {[0, x] , [x, 1]} is less informative than {[0, a1] , [a1, 1]}.
8The partition {[0, x] , [x, z] , [z, 1]} is more informative than {[0, a1] , [a1, 1]}.
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For welfare to improve, this gain in probability must be sufficient to offset both
the loss in welfare in the event of an unsuccessful conversation and, keeping all else
fixed, the increased aversion to risk. When the expert is sufficiently risk-averse the
gains outweigh these two effects.9

5 Extreme Bias (b > 1
8)

In this section, we generalize the construction in Example 2 to show that when an
expert’s bias is extreme (b > 1/8) there exist equilibria that are Pareto superior to
all equilibria in the CS model. The main result of this section is:

Theorem 2 For all b ∈
³
1
8
, 1√

8

´
, there exists a nonmonotonic perfect Bayesian equi-

librium in the model with face-to-face communication which is Pareto superior to all
equilibria in the CS model.

To prove the result, we first characterize a class of nonmonotonic equilibria arising
with face-to-face conversations (Section 5.1) and then show that for all values of b,
an equilibrium in this class is an improvement over all equilibria in the CS model
(Section 5.2).
In is useful to note that unlike all equilibria in the CS model and the construction

given in Proposition 1, the equilibria constructed in this section are nonmonotonic–
that is, they have the property that higher states are sometimes associated with
(strictly) lower actions. In Section 5.3, we establish the necessity that an equilib-
rium be nonmonotonic for it to be beneficial compared to the most informative CS
equilibrium when the expert’s bias is extreme.

5.1 Construction of Nonmonotonic Equilibria

We construct a class of nonmonotonic equilibria along the lines of Example 2. The
nature of these equilibria, whose detailed construction is provided below, is as follows.

• In the face-to-face meeting, the expert’s message reveals whether the state θ lies
in a set of the form [x, z] or not (where 0 < x < z < 1) and a second message
A1 chosen from some suitable set of messages A. Formally, the expert’s message
is either of the form (In,A1) or of the form (Out,A1) . The first component, In
or Out, conveys that θ ∈ [x, z] or θ ∈ [0, x] ∪ [z, 1], respectively. The decision
maker sends also sends a message A2 ∈ A.

9This is not to say that one cannot construct an equilibrium with conversations that is welfare
improving when agents have absolute value preferences, only that constructions along the lines of
Proposition 1 cannot lead to improvement. Indeed, one can show that more complicated construc-
tions may improve welfare.
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• Subsequent play depends on the messages that were exchanged in the face-to-
face meeting.

— If the expert says In, this is interpreted to mean that θ ∈ [x, z] . In the
subsequent game, the babbling equilibrium in the interval [x, z] is played.

— If the expert says Out, this is interpreted to mean that θ ∈ [0, x] ∪ [z, 1] .
The subsequent play then depends on whether the meeting is deemed to
be a success. The success or failure of the meeting is determined by a
“success function” S : A × A → {0, 1} . A meeting is a success if and
only if S (A1, A2) = 1. The message sets A and the success function S are
chosen so that a particular jointly controlled lottery to be chosen below
can be played.

∗ If the meeting is deemed to be a success, then in the subsequent play
the expert further reveals whether θ ∈ [x, z] or θ ∈ [z, 1] for some
suitably chosen z satisfying x < z < 1–that is, the interval [x, 1] is
further separated into [x, z] and [z, 1] .
∗ If the meeting is deemed to be a failure, then there is no further
information conveyed–that is, a babbling equilibrium in the set [0, x]∪
[z, 1] is played.

We will show that for all b ∈
³
1
8
, 1√

8

´
there exist a continuum of points x and z

satisfying 0 < x < z < 1 and a probability p such that the strategies outlined above
constitute an equilibrium. It is convenient to refer to this kind of equilibrium as an
“inside-outside” equilibrium–in the first stage the expert reveals whether the state
is inside [x, z] or outside.
Let

z = 1− αx (12)

and notice that this entails no loss of generality. We will show that there exists an x,
an α ∈ (0, 1) , and a p that comprise an inside-outside equilibrium.
First, we calculate the “pooling” action y that is optimal for the decision maker

when the state is revealed to be in [0, x] ∪ [z, 1]. This is

argmin
y0

Z x

0

(y0 − θ)
2
dθ +

Z 1

z

(y0 − θ)
2
dθ

It is easy to verify that

y =
α

1 + α
+
1

2
(1− α)x (13)

and note that since α < 1,

y =
α

1 + α
+
1

2
(1− α)x <

1

2
+
1

2
(1− α)x =

x+ z

2
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In other words, the “pooling” action, y, that is optimal in the set [0, x]∪ [z, 1] is lower
than the “medium” action x+z

2
that is optimal in the middle interval [x, z] .

The points x and z and the probability p must be such that when the state is x,
the expert is indifferent between a p : 1− p lottery over actions x

2
and y on the one

hand, and the action x+z
2
on the other. Similarly, when the state is z, the expert is

indifferent between a p : 1 − p lottery over actions 1+z
2
and y on the one hand, and

the action x+z
2
on the other. The two “no arbitrage” conditions are:

(1− p) (y − (x+ b))2 + p
³x
2
− (x+ b)

´2
=

µ
x+ z

2
− (x+ b)

¶2
(1− p) (y − (z + b))2 + p

µ
1 + z

2
− (z + b)

¶2
=

µ
x+ z

2
− (z + b)

¶2
The (x, p) pair that solves this system of simultaneous equations is

x (α) =
(1 + α) (4b (1− α) + 5 (1 + α))−pφ (α, b)

4 (1 + α) (α2 + 4α+ 1)
(14)

where

φ (α, b) = (1 + α)
£
48 (3 + α) (1 + 3α) (1 + α) b2 + 8 (1− α)

¡
9α2 + 26α+ 9

¢
b

+(1 + α)
¡
9α2 − 14α+ 9¢¤

and

p (α) =
(1− 4b)− 3α2 + 4bα2 − 2x+ 2α (1− x) + 2α3x+ 2α2x

(2− x− αx)α (α2x+ 3αx+ 2x+ 4b (1 + α)− 2α) (15)

where we have suppressed the dependence of x and p on the bias parameter b.
We next show that there exists a value of α close to α = 1 such that the point

x and the probability p, as determined in (14) and (15), respectively, together with
z = 1− αx, comprise an equilibrium.

Notice that the unique value of α where x (α) = 0 is α∗ =
2b−(1−8b2)
2b+1−8b2 . It is easy to

verify that α∗ < 1 if and only if b < 1√
8
.

We first check that when α is close to 1, the resulting solution for x (α) and z (α)
is feasible. When α = 1, x = 5

12
− 1

12

√
1 + 192b2. Notice that as long as b < 1√

8
,

this value of x is strictly positive and less than 1
2
. Hence, values of α close to 1 yield

values of x between 0 and 1. Further, since x < 1
2
, then z = 1− αx > x; hence this

yields a feasible value of z as well.
We next check that when α is close to 1, the solution for p is feasible, that is

p ∈ (0, 1). Notice that when α = 1, p (1) = 0. Moreover, this is the only α ∈ [0, 1]
where p = 0. Further, limα→0 p (α) = 4

3(4b+3)
> 0 (using L’Hôspital’s rule to evaluate

the limit of p (α) from (15)). Hence, for values of α close to 1 the solution for p is
feasible.
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Now consider the function f (θ), which is just the difference between the expected
payoff of the expert in state θ from the p : 1 − p lottery of actions x

2
and y and the

payoff in state θ from the action x+z
2
.

f (θ) = (1− p) (y − (θ + b))2 + p
³x
2
− (θ + b)

´2
−
µ
x+ z

2
− (θ + b)

¶2
(16)

and recall that by construction, f (x) = 0. Now

f 0 (θ) = −2 (1− p) (y − (θ + b))− 2p
³x
2
− (θ + b)

´
+ 2

µ
x+ z

2
− (θ + b)

¶
= −2 (1− p) y − 2px

2
+ 2

x+ z

2

= 2

µ
x+ z

2
−
³
p
x

2
+ (1− p) y

´¶
> 0

since y < x+z
2
. So for all θ < x, f (θ) < 0 and for all θ > x, f (θ) > 0.

Similarly, consider the function g (θ) , which is the difference between the expected
payoff of the expert in state θ from the p : 1− p lottery of actions 1+z

2
and y and the

payoff in state θ from the action x+z
2
.

g (θ) = (1− p) (y − (θ + b))2 + p

µ
1 + z

2
− (θ + b)

¶2
−
µ
x+ z

2
− (θ + b)

¶2
(17)

and, as before, by construction, g (z) = 0. Now

g0 (θ) = −2 (1− p) y − 2p1 + z

2
+ 2

x+ z

2

= 2

µ
x+ z

2
−
µ
p
1 + z

2
+ (1− p) y

¶¶
But notice that limα→1 g0 (θ) < 0 since y (1) = x(1)+z(1)

2
. Thus, for α close to 1, it

is also the case that g0 (θ) < 0. This implies that for all θ < z, g (θ) > 0 and for
all θ > z, g (θ) < 0. Together, the conditions on f and g imply that it is incentive
compatible for the expert to reveal whether or not the state is in [x, z] in the first
stage.
It remains to verify that once it has been revealed in the first stage that θ ∈

[0, x] ∪ [z, 1] and the face-to-face meeting has been a success, then it is the case that
the expert is willing to separate [0, x] from [z, 1]. But this also follows from the facts
derived above. For instance, if θ ∈ [0, x] then f (θ) < 0 and g (θ) > 0 together imply
that ³x

2
− (θ + b)

´2
<

µ
1 + z

2
− (θ + b)

¶2
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so that the expert is willing to separate [0, x] from [z, 1]. Similarly, when θ > z, the
opposite inequality holds.
Thus, for all α close to 1, there is an inside-outside equilibrium of the kind de-

scribed above. We have shown

Proposition 2 (Existence of Nonmonotonic Equilibria) For b ∈ [1
8
, 1√

8
), there

is a continuum of nonmonotonic perfect Bayesian equilibria of the game with face-to-
face communication. The equilibrium outcomes are distinct from those of the equilib-
ria of the CS model.

5.2 Pareto Superior Equilibria

Proposition 2 shows that for all α close to 1, there exist nonmonotonic “inside-outside”
equilibria. For values of b ≥ 1

4
, such equilibria constructed are clearly more informa-

tive than, and Pareto dominate, the CS equilibrium, which entails no information
transmission whatsoever on the part of the expert.
For values of b < 1

4
, however, inside-outside equilibria when α is close to 1 are not

do not improve payoffs relative to the “best” CS equilibrium. To establish Theorem
2, we still need to show that Pareto superior equilibria can also be constructed for
values of b ∈ ¡1

8
, 1
4

¢
. We do this by considering inside-outside equilibria of the kind

described above for values of α which are close to 0. Specifically, we show that, for all
b ∈ ¡1

8
, 1
4

¢
, there exists an α close to 0 that results in a Pareto superior equilibrium.

Suppose b ∈ ¡1
8
, 1
4

¢
. Recall that for these values of b, the most informative CS

equilibrium is one with a two-element partition which breaks the state space into two
at the point 1

2
−2b. Now notice that as α→ 0, then from (14) x (0) = 1

2
−2b.Moreover,

in that case z = 1. Thus when α = 0, the inside-outside equilibrium reduces to the
most informative CS equilibrium.10

To verify that there is an inside-outside equilibrium for values of α close to 0, we
look at the limiting properties of the relevant variables. We know that limα→0 x (α) =
x (0) = 1

2
− 2b ∈ ¡0, 1

2

¢
. It may be verified that

lim
α→0

p (α) =
8

3 (4b+ 3)

(by using L’Hôspital’s rule in (15)), so that limα→0 p (α) ∈ (0, 1). Since limα→0 x (α)
and limα→0 p (α) are both strictly between 0 and 1, it is the case that for values
of α close to 0, x (α) and p (α) are also feasible. Moreover, x (α) < 1

2
, so that

x (α) < z (α) = 1− αx (α).
Now consider the functions f and g as defined in (16) and (17), respectively. As

before, for all θ < x, f (θ) < 0 and for all θ > x, f (θ) > 0 (the argument in the

10Notice that x (0) is infeasible if b ≥ 1
4 . Thus there are inside-outside equilibria for values of α

close to 0 only if b < 1
4 . In contrast, for values of α close to 1 there are inside-outside equilibria for

all b between 1
8 and

1√
8
.
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previous subsection did not rely on the particular value of α). But recall that

g0 (θ) = 2
µ
x+ z

2
−
µ
p
1 + z

2
+ (1− p) y

¶¶
and it may be verified that

lim
α→0

g0 (θ) = −1
3
< 0

Thus, when α is close to zero, for all θ < z, g (θ) > 0 and for all θ > z, g (θ) < 0. As
above, this completes the proof that x and p comprise an equilibrium.
It remains to argue that for b ∈ ¡

1
8
, 1
4

¢
and α is close to 0, the constructed

equilibrium is Pareto superior to the most informative CS equilibrium.
For arbitrary α ∈ (0, 1), the expected utility of the decision maker in an inside-

outside equilibrium is

W (α) = −
Z x

0

µ
p
³x
2
− θ
´2
+ (1− p) (y − θ)2

¶
dθ −

Z z

x

µ
x+ z

2
− θ

¶2
dθ

−
Z 1

z

Ã
p

µ
1 + z

2
− θ

¶2
+ (1− p) (y − θ)2

!
dθ

Recall that W (0) is the same as the decision maker’s expected utility in the best CS
equilibrium; that is,

W (0) = − 1

12N (b)2
− b2

¡
N (b)2 − 1¢
3

where N (b) = 2 since b ∈ ¡1
8
, 1
4

¢
.

Now it can be shown that

lim
α→0

W 0 (α) =
1

3
b (8b− 1) > 0

for all b ∈ ¡1
8
, 1
4

¢
. (The details of this computation may be obtained from the authors.)

Since W (α) is equal to the payoff from the best CS equilibrium when α = 0 and
limα→0W 0 (α) > 0, for all b ∈ ¡1

8
, 1
4

¢
we conclude that for all such b, when α is close

to 0, there is an inside-outside equilibrium that is Pareto superior to the best CS
equilibrium.
Figure 4 summarizes the key features of inside-outside equilibria. Inside-outside

equilibria are feasible whenever α lies above the lower of the two curves; in particular,
they exist for values of α close to 1–this is the content of Proposition 2. Inside-outside
equilibria are Pareto superior to any CS equilibria whenever α lies below the higher
of the two curves. For b ≥ 1

4
, every inside-outside equilibrium is more informative

than CS equilibria since the latter are completely uninformative. For b ∈ ¡1
8
, 1
4

¢
,

inside-outside equilibria are Pareto superior for values of α close to 0, as established
in the argument of this section.
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Figure 4: Feasible and Payoff Superior Inside-Outside Equilibria

5.3 Monotonic Equilibria

We end this section by showing that nonmonotonic equilibria are in fact necessary to
achieve Pareto gains when the expert’s bias is extreme. Specifically, we show that for
b ≥ 1

8
, there cannot be a monotonic equilibrium that improves the outcome compared

to the most informative CS equilibrium. For values of b ∈ [1
8
, 1
4
) monotonic equilibria

do exist, but they are Pareto dominated by the most informative CS equilibrium. For
values of b ≥ 1

4
, the only monotonic equilibrium involves babbling as in Crawford and

Sobel.
Formally, we establish that

Proposition 3 For all b ≥ 1
8
, all monotonic equilibria of the game with face-to-face

communication are Pareto inferior to the best CS equilibrium.

Proof. First, suppose b ∈ [1
8
, 1
4
). In this case, if it is common knowledge that the state

lies in some subinterval of [0, 1] , a partition equilibrium can have at most two elements
and the length of the subinterval must be greater than 4b. This fact implies that if
the interval [0, 1] is divided into [0, x] and [x, 1], either [0, x] is further subdivided
into [0, z] and [z, x] and the interval [x, 1] is not subdivided any further; or [0, x] is
not subdivided but [x, 1] is (as in the previous section). We now argue that the first
possibility can be ruled out.
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Consider such an equilibrium and suppose that, with some probability, the interval
[0, x] is separated into subintervals [0, z] and [z, x] . The separation requires that

z = −2b+ 1
2
x

For z > 0 requires x > 4b.11

Moreover, it must be that there is a p such that when the state is x, the expert
is indifferent between the action x+1

2
for sure and a p : 1− p lottery between x+z

2
and

x
2
. Thus we must have

p

µ
x+ z

2
− (x+ b)

¶2
+ (1− p)

³x
2
− (x+ b)

´2
=

µ
x+ 1

2
− (x+ b)

¶2
(18)

The necessary conditions for a p ∈ (0, 1) that solves equation (18) are
1 + x

2
> x+ b

1 + x

2
− (x+ b) > x+ b− x+ z

2

The second inequality reduces to (after substituting for z)

1

2
>
3

4
x+ 3b (19)

Since x > 4b, the inequality required in equation (19) implies that

1

2
> 6b

which is a contradiction since b ≥ 1
8
.

Thus, when b ≥ 1
8
all monotonic equilibria must involve separation of an interval

of the form [x, 1].
The expected utility from such an equilibrium is

W (x) = −
Z x

0

³x
2
− (θ + b)

´2
dθ

−p
ÃZ z

x

µ
x+ z

2
− (θ + b)

¶2
dθ +

Z 1

z

µ
1 + z

2
− (θ + b)

¶2
dθ

!

− (1− p)

Z 1

x

µ
1 + x

2
− (θ + b)

¶2
dθ

= − 1
12

x2 +
1

3
xb− 1

3
b− b2

11Since b ≥ 1
8 , this implies that x > 1

2 , so there is insufficient room to separate over the interval
[x, 1] when separating over [0, x] .
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The x which maximizes W (x) is x∗ = 2b; however this value of x is only feasible
when x < a1,which it is not when b ≥ 1

8
. Thus, the welfare maximizing feasible value

of x is x = a1, which is outcome equivalent to the best CS equilibrium.
When b ≥ 1

4
, the unique monotonic equilibrium is babbling as in the CS model.

6 Extensions

In this section, we consider two extensions of the amended model. In Section 6.1,
we show that introducing a mediator into the conversation between the expert and
the decision maker can lead to further informational improvement over the equilibria
we identified, even absent multiple stages or active participation by the decision
maker. In Section 6.2, we show that a central result of the CS model, that divergent
preferences necessarily give rise to information withholding in equilibrium, continues
to hold regardless of the number of stages of conversation or the active participation
of the decision maker.

6.1 Mediated Talk

In the preceding sections we have emphasized the benefits of plain conversation be-
tween the decision maker and the expert–that is, the mode of communication is what
we have called “face-to-face” and does not involve the use of any outside agencies.
An alternative mode is to make use of an external mediator (see Myerson (1986) and
Forges (1986, 1999b)) who functions as follows: First, the expert reports a state θ to
the mediator. The mediator then suggests an action y to the decision maker that is
chosen at random from some known probability distribution p (y | θ). A mediator is
said to be incentive compatible if (i) the decision maker has the incentive to choose the
suggested action y given his posterior beliefs q (· | y) on the state of nature induced
by the suggestion; and (ii) given the probability distribution p (y | θ), the expert has
the incentive to reveal the state truthfully to the mediator.
Notice that any equilibrium of a model with plain conversation can be induced

via a mediator–one that duplicates the implied probability distributions p (· | θ).
However, since the mediator himself is assumed to have no preferences and so the
mediator’s actions are not subject to any incentive compatibility constraints, he can
sometimes improve information transmission over and above what is possible with
plain conversation.
To illustrate the benefits of mediated talk, we consider a case of very extreme

bias, say b = 1√
8
. In this case, the only equilibrium of the CS model is completely

uninformative, nor is there a monotonic equilibrium of the game with face-to-face
communication in which any information transmission takes place. Finally, it can be
argued that there is no informative inside-outside nonmonotonic equilibrium of the
kind constructed in the previous section. A mediator, however, can facilitate useful
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information transmission even when the bias is as extreme as that considered here.
We now construct an explicit example to illustrate this.
Let x = 1

8
and define K =

p
7409− 5200√2. Let

y1 =
1

16

545− 296√2− 9K
73− 40√2−K

' 0.413

y2 =
1

16

575− 344√2 + 9K
67− 40√2 +K

' 0.544

The mediator suggests only actions y ∈ {y1, y2} . If θ < x, then y1 is suggested with
probability p11 = 4

5
and y2 with probability p12 = 1−p11. If θ ≥ x, then y1 is suggested

with probability p21 and y2 with probability p22 = 1− p21, where

p21 =
2

35

59− 32√2−K

7− 4√2 ' 0.269

Given that yi is suggested, the posterior probability assigned by the decision maker
to the event that θ < x is

q1i =
xp1i

xp1i + (1− x) p2i

and it may be verified that for i = 1, 2

yi = argmin
y

q1i
1

x

Z x

0

(y − θ)2 dθ + (1− q1i)
1

1− x

Z 1

x

(y − θ)2 dθ

Thus, it is incentive compatible for the decision maker to follow the mediator’s rec-
ommendations.
Given the randomizing device used by the mediator, the expert has no incentive

other than to tell the truth. This is because in state θ, the difference in the expert’s
payoffs from reporting that the state is greater than x rather than less than x is

p11 (y1 − (θ + b))2 + p12 (y2 − (θ + b))2 − ¡p21 (y1 − (θ + b))2 + p22 (y2 − (θ + b))2
¢

which is negative when θ < x and positive when θ > x. Thus it is incentive compatible
for the expert to reveal the state truthfully to the mediator.
The equilibrium constructed above is monotonic–y1 < y2 and the distribution

of actions (p21, p22) induced when θ ≥ x stochastically dominates the distribution of
actions (p11, p12) induced when θ < x. Thus, with mediated talk, there is an infor-
mative monotonic equilibrium even though with face-to-face communication there is
none.
One can say something stronger than this: the outcome in the mediated game

given above is not an equilibrium (monotonic or otherwise) of any k stage conversa-
tion. To see this, consider a one stage conversation. If, following any conversation,
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there were no additional information in the expert’s final report, then the conversa-
tion itself is irrelevant. Thus, if that were the case, then the expert would be choosing
between actions y1 and y2 in the first stage. However, the only states for which it is
optimal to induce y1 over y2 are those where θ ≤ x, but knowing that θ ≤ x, it is
no longer optimal for the decision maker to select y1. Therefore, the expert must be
revealing additional information in his final report. However, again this information
must ultimately determine whether the decision maker selects y1 or y2 and the same
condition holds; therefore, y1 is again not optimal for the decision maker. Hence, this
outcome is not attainable in any one stage conversation.
By backward induction, the same argument may be used to establish that this

outcome is not attainable in a k stage conversation where k is finite.

6.2 Full Revelation

Consider a variation of the amended game where for k > 0 stages the expert and the
decision maker meet face-to-face, followed by the expert issuing a written report, and
the decision maker taking some action. We show:

Proposition 4 All equilibria with conversations are bounded away from full revela-
tion.

Proof. Suppose not. Then there is a sequence of equilibrium messages mn and
probability distributions over equilibrium messages µn (θ) such that for all ε, there
exists an N such that for all n ≥ N,

µn (θ) ({m : |y (m)− θ| > ε}) < ε

where y (m) is the action chosen following message m.
Let θ0 < θ00 and let these be close enough so that θ00 < θ0 + b. Let

ε < min

½
1

2
(θ00 − θ0) , (θ0 + b)− θ00

¾
This implies, in particular, that in state θ0 the expert strictly prefers every y in an ε
neighborhood of θ00 to every y in an ε neighborhood of θ0.
So in state θ0 if the expert were to behave as if the state were θ00, then for small

enough ε, the resulting distribution over actions would be preferred to the distribution
if he were to behave truthfully. This is a contradiction.

Note that Proposition 4 extends unchanged to the case of mediated talk.
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7 Discussion

We have shown that a simple and natural amendment of the CS model leads to more
information disclosure by an expert. Specifically, when the decision maker and expert
have a face-to-face conversation prior to the issuance of the expert’s final written
report, more information is revealed in equilibrium than where no such conversation
precedes the written report. This is the case even though the decision maker is
completely uninformed.
The decision maker injects only randomness into the conversation, and ultimately

into the actions taken in response to the expert’s advice. By breaking the deter-
ministic link between and expert’s advice and the ultimate action undertaken, the
incentives for the expert to strategically withhold information are reduced. Some-
what paradoxically, the injection of uncertainty is typically more effective when the
expert is more risk-averse.
Allowing for active participation by the decision maker and multiple stages of

communication into the model leads to sets of equilibria that are more complex, in
several dimensions, than the characterization in the CS model. First, in their model,
there are only finitely many equilibria. With conversations, there are a continuum of
equilibria. Second, for a given number of partition elements arising in an equilibrium
in their model, there is a unique partition structure. This is not the case for the equi-
libria with conversations. Third, all CS equilibria are monotonic–higher actions are
associated with higher states. With conversations, equilibria may be nonmonotonic.
Finally, and most importantly, we have shown that the predictions of the CS model
about information withholding by experts are, in a sense, overly pessimistic.
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